Articles

Brief Overview of Colloidal Ionic Silver Dispersion and its Properties

Posted by:

A lot has been written about properties and uses of colloidal (ionic) silver dispersions and various bioactive properties of silver cations (Ag+). General public interest in applications of colloidal ionic silver dispersions (CISD) is quite understandable when one considers uses of CISD which are diverse and range from antimicrobial treatments and facilitation of wound healing process to odour prevention in shoes and clothes.

Unfortunately, most information available on internet and in popular magazines is often outdated and sometimes even self-contradictory. Colloidal ionic silver dispersion (CISD) is often portrayed as some kind of panacea with no side effects which is simply not true in reality. As we will see later in article, CISD treatment might cause exacerbation of some medical conditions and it should be avoided in such cases.

A number of scientific studies have been performed on the topic of properties and effectiveness of colloidal ionic silver dispersions, however most of them were published in non-English languages. Perhaps that language barrier might explain why some of laboratory and observational data is often overlooked and not taken into consideration.

Please note: In order to keep this article as understandable as possible I had to resort to simplifications as much as possible although it inevitably leads to loss of scientific accuracy.

What is Colloidal Silver?

The name colloidal silver comes from the fact that very small particles of silver (Ag) are dispersed in the water thus forming a colloidal dispersion. Simply said, it means very small particles of silver evenly distributed in a volume of water in such a way which prevents their settling. Ideally, particle size of silver particles should range from 10 nm to 500 nm. However, due to imperfections in production process there is a certain percentage of silver particles that are larger, which can sometimes be seen under an optical microscope.

Concentration of silver particles in colloidal dispersion is usually expressed in ppm (parts per million) and is measured by specially designed laboratory instruments. Concentration of Ag particles in the colloidal dispersion can also be measured through measurement of ohmic resistance. Measured values of dispersion’s resistance are non-linear and are dependent on several physical factors like temperature of dispersion, its degree of contamination, cleanliness of test probes surfaces and their relative positions etc. It makes resistance measurement method useful but crude method of measuring the saturation of colloidal (ionic) silver dispersions.

Colloidal Silver Benefits

Composition of the colloidal (ionic) silver dispersion is probably one of the most important factors contributing to its effectiveness. It has been found that most of the bioactive action (benefits) of colloidal silver dispersion is probably due to particular electrochemical activity of the silver cations Ag+. Higher concentration of Ag+ cations in the colloidal silver dispersion directly correlate to the effectiveness of the colloidal silver dispersion in medicinal and wound healing facilitation applications.

Due to imperfections in the production process most homemade colloidal silver dispersions contain 5 – 20% of silver (Ag+) cations. On the other hand properly produced high-quality colloidal ionic silver dispersions can contain 80 – 95 % of Ag+ cations which makes it much efficient and potent. In order to make a distinction between colloidal silver dispersion which contain low concentration of Ag+ cations and  high-quality dispersion which contain high concentration of Ag+ cations often a term “ionic” is added to the name – Colloidal Ionic Silver Dispersion (CISD).

Higher concentration of Ag particles and silver ion cations (Ag+) in the colloidal dispersion is desirable due to better effectiveness of CISD in the treatment of wounds and infections. However, when concentration of Ag particles and cations (Ag+) get too high it will reach the threshold of agglomeration. Simply said, Ag particles and cations (Ag+) in the colloidal dispersion are evenly distributed due to their mutual electrostatic repulsive force being the same polarity. When saturation of colloidal dispersion reaches certain threshold, then the net repulsive force becomes too strong and any irregularity in the distribution matrix of the Ag particles will cause its instability and grouping of particles into larger clusters (“clumps”). Structure of such clusters prevents their electrochemical interaction with living cells thus effectively rendering agglomerated CISD entirely useless for any medicinal use.

Agglomeration (grouping of particles into clusters)

Agglomerated colloidal silver dispersion can easily be recognised by yellowish tint of dispersion which ranges from slightly visible colouration to dark yellowish tones similar in appearance to urine. Other colourations of the colloidal ionic silver dispersion are considered to be sure indicator of its contamination with foreign particles and/or compounds.

Agglomeration event usually happens if proper production procedures are not observed but it can also be caused by some external stimulus like too high or too low storage temperature, exposure to sunlight, evaporation of water from dispersion etc. HSCISD with high saturation level of up to 19 ppm is more sensitive to external stimulus and sometimes even the sudden shake of container can cause agglomeration. That is why CISD and HSCISD should be stored in closed, dark glass containers at temperature that is not lower than 6 – 7°C nor higher than 20 – 25 °C.

How to Make Colloidal Silver the Right Way?

Properly produced colloidal ionic silver dispersion should be entirely transparent, with no visible particles or colourations of any kind. When held against the light, ideally the liquid should present no apparent visual distortions or reflections. One of the simplest methods of identifying colloidal dispersions is by using Tyndall scattering effect. Tyndall scattering effect can be observed in colloidal dispersions by scattering of light of coherent light beam passing through the dispersion. In case of colloidal ionic silver dispersion the simplest way of using Tyndall scattering effect is to point laser beam through the dispersion. Laser beam will be scattered and it will appear to thicken while passing through the CISD. Higher concentration of dispersed Ag particles will cause more light scattering of the laser beam and it will appear to grow thicker. Other factors like size of particles and even temperature of dispersion also affect scattering of laser beam and introduce non-linearity in measurement, so this method should be considered to be only a crude indicator of CISD saturation levels.

Properties of water used in production process and its possible contamination might present the problem because silver particles and especially silver cations (Ag+) easily react with minerals or other electrochemically active particles and molecules that it comes in contact with. As a result of such process, various silver ionic compounds (like silver salts) are synthesised. Silver salts exhibit virtually no bioactive effects and they have tendency to accumulate in the tissues.

Colloidal Silver Uses

Two of the most interesting bioactive properties of colloidal ionic silver dispersion are its capability to kill microbes (and generally all prokaryotes) and to cause dedifferentiation of red blood cells into polypotent cells (stem cells). In both cases saturation of CISD and electrochemical properties of silver cations (Ag+) play major role. Highly saturated CISD (HSCISD) is more effective due to higher concentration of Ag particles in the dispersion. On the other hand, high amount of silver cations (Ag+) provide basis for electrochemical reaction with microbes and/or red blood cells.

Treatments with CISD and HSCISD often result with death of microbial organisms like bacteria, yeast, mould and majority of other prokaryotes. Such antimicrobial action is attributed to the inhibition of prokaryote’s cell membrane respiratory enzymes by disrupting their electron transport chain. Disruption of prokaryotes respiratory cycle by silver cations (Ag+) consequently leads to their death by “suffocation”. Since underlying mechanism of microbial death is electrochemical by its nature, it is virtually impossible for microbes and other prokaryotes to develop any kind of resistance to treatments with CISD.

Effectiveness of colloidal ionic silver dispersion on viruses is still a matter of debate. Although there is some practical evidence that CISD could be beneficial on virus infections, the mechanism of its action is not well understood. Currently prevalent theory of CISD antiviral properties is based on the fact that every virus, once it infiltrates living cell, takes control of infected cell’s metabolic processes in order to replicate itself. Metabolic processes of the “incubator” cell are thus changed into the form somewhat similar to the respiratory mechanism of prokaryotes. When such change occurs, infected cell becomes sensitive to the electrochemical action of Ag+ cations which are then capable of inhibiting its respiratory processes and killing it. In that way infected cell is devitalised or killed before virus is able to reproduce and spreading of viral infection is effectively prevented.

Perhaps the most interesting property of colloidal ionic silver dispersion is its capability to dedifferentiate red blood cells. Some of the earliest sources describing effects are works of Dr Robert O. Becker who observed faster healing of wounds, with less scarring, if wounds were to come in the contact with silver cations (Ag+). He managed to produce silver cations (Ag+) directly in the wound by application of weak direct current to the silver electrodes and facilitate wound healing process. At later date it was discovered that silver cations (Ag+) can be produced in a separate process (CISD, HSCISD) and then applied directly to the wound.

Initially the underlying process of facilitated wound healing was not well understood. At later date it was discovered that red blood cells dedifferentiate into a form similar to stem cells when they come in the contact with silver cations (Ag+). Although entirely developed red blood cells lack nucleus it was later discovered that in fact they do contain nucleus in the early stages of their development and prior to their final differentiation. It is probably those “immature” cells that react with silver cations (Ag+) and dedifferentiate into polypotent cells although the physical mechanisms are not yet completely understood.

Cells undergoing dedifferentiation process redevelop their nucleus and essentially become polypotent. Stem cells produced in such processes accumulate into clusters which eventually become building blocks for new tissue. Accelerated rate of growth of various different types of tissue can be observed virtually every time when properly produced CISD is applied on open wounds or burns.

Although CISD are rather effective antiseptics it must be noted that skin penetration properties of Ag particles and silver cations (Ag+) are virtually non-existent. The best one could expect is penetration of CISD into cornified layer of skin which limits its use almost exclusively to topical treatments. Usefulness of CISD in treatment of internal and/or systemic infections by ingestion of CISD is doubtful due to the fact that most silver particles will inevitably react with hydrochloric acid and other stomach content to form various silver compounds (mostly silver salts). Some theories have been proposed, speculating that silver cations (Ag+) in fact do not react with hydrochloric acid and that they are absorbed into blood stream through stomach lining and intestinal walls.

Experiments I performed indicate that electrochemical activity of silver cations (Ag+) is high enough to cause immediate reaction with even just minute amounts of mineral contaminants in water. As consequence synthesis of silver salts and other ionic compounds takes place. In my view it is the illogical to suppose that CISD and HSCISD would somehow behave differently when they come in the contact with hydrochloric acid and remnants of food in stomach.

Another controversial topic relates to properties and possible uses for colloidal ionic silver dispersion in treatment of (topic) neoplasms like tumour and cancer. Although there is no known mechanism by which CISD could affect tumour and cancer cells, there are some reports indicating possible beneficial effects in some cases of topical neoplastic diseases (various skin tumours and cancers). It must be noted that in most of such cases CISD was used only as supplemental treatment rather than primary one so there is no real way of knowing if CISD really did affect neoplasms or was it just a coincidence or even a placebo effect.

One could speculate that treatments with colloidal ionic silver dispersions are in fact curing visible or occult secondary infections of neoplasm and surrounding tissues. By curing secondary infections some of previously occupied resources of immune system would be available to additionally attack neoplastic cells. What is more, areas infected with microbes and yeast often exhibit decrease in pH which provides neoplastic cells more suitable growth medium. By curing the infections, pH of surrounding medium should at least slightly rise toward alkaline, thus providing environment which is less suitable for development and growth of neoplasm.

Given the fact that genesis of some neoplastic diseases has been linked to viral and yeast infections, it might as well be that some of observed beneficial effects could be attributed to (possible) antiviral and antimicrobial properties of CISD.


Colloidal Silver Side Effects

Although some sources are advocating treatment of neoplastic diseases with CISD I would strongly advise against any such action. What makes me vary of such treatments is the fact that when silver cations (Ag+) come into contact with red blood cells, they induce dedifferentiation in those cells and they effectively transform into a sort of polypotent cells (stem cells). The reason why CISD should not be used for treatment of neoplastic diseases is because stem cells are known to sometimes exacerbate neoplastic diseases and could lead to acceleration of tumour and cancer growth or their metastasising. That is also the main reason why conventional stem cells therapy is counter indicated if the patient is suffering from some type of neoplastic disease.

There have been reports from the 1930’s and 40’s of experimental treatments using intravenous and intramuscular injections to deliver CISD (perhaps HSCISD as well) directly to the infection foci. While such approach to CISD treatments seems like a logical approach, there is always a question of possible side effects that might occur as a result of such treatments. Unfortunately, historical data on intravenous and intramuscular use of colloidal ionic silver dispersion is scarce and incomplete and I am not aware of any on-going research of this topic.

That being said, some of the properties of CISD and HSCISD reported in literature and by users also seemed illogical and perhaps impossible, only to be proven real and explained at later date. I hope that new research and experimental data will provide more definite answer to the question of the usefulness of ingestion of CISD and HSCISD. However, for the moment I remain sceptical.

Excessive accumulation of silver salts and other silver compounds in the body may lead to development of the medical condition called argyria. Although argyria is not life threatening or debilitating it does have unfortunate consequence of permanent change of skin colour tone to bluish-grey colour and increased photosensitivity. It must be noted that one would have to ingest very high doses of silver salts over longer periods of time in order to develop argyria. In case of properly produced colloidal ionic silver dispersions, silver salts are virtually non-existent. Since it is virtually impossible for silver cations (Ag+) to accumulate in tissues any chance of developing argyria is eliminated.

In Conclusion

High quality colloidal ionic silver dispersions proved themselves to be rather efficient in treatment of topical infections and in facilitation of wound healing process. However, CISD have its limitations and is NOT panacea in any way. It might even be detrimental or dangerous to apply CISD treatment in case of neoplastic diseases like tumours and cancers for the reasons given earlier in this overview.

Presently there is simply not enough solid information available for us to be able to predict with certainty what would be the effects of CISD on some particular diseases. During my research on improvements and enhancements of the HSCISD production process I fast learned that there are many seemingly unimportant parameters which one might overlook as unimportant but which at later stage of research proved to be crucial for the success of production process and medicinal and other applications.

Although it is at times difficult to gather solid data on the behaviour of CISD and HSCISD in medicinal treatments, recently I had an opportunity to once more observe effectiveness of highly saturated colloidal ionic silver dispersion in facilitation of wound healing process. During the course of HSCISD treatment I took a few photographs which illustrate some of the points I mentioned earlier in this brief overview of CISD properties.

0
  Related Articles

Add a Comment